Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 114(2): 784-793, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33480425

RESUMO

Conservation biological control could be an alternative to insecticides for the management of the aphid Myzus persicae (Sulzer). To develop sustainable strategies for M. persicae control in peach orchards in the Mediterranean, a 2-yr field experiment was conducted to identify the key predators of the aphid; to determine whether the proximity of insectary plants boost natural enemies of M. persicae in comparison to the resident vegetation; and whether selected insectary plants enhance natural enemy populations in the margins of peach orchards. Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) and Episyrphus balteatus De Geer (Diptera: Syrphidae) were the most abundant predators found among sentinel aphid colonies, accounting for 57% and 26%, respectively. Samplings during 2015 yielded twice as many hoverflies in M. persicae sentinel plants close to the insectary plants as those close to the resident vegetation. The abundance of other natural enemies in sentinel plants, depending on their proximity to the insectary plants, was not significantly different in either of the 2 yr. Hoverflies hovered more often over the insectary plants than over the resident vegetation and landed significantly more often on Lobularia maritima (L.) Desv., Moricandia arvensis (L.) DC., and Sinapis alba L. (Brassicales: Brassicaceae) than on Achillea millefollium L. (Asterales: Compositae). Parasitoids were significantly more abundant in L. maritima and A. millefollium. The vicinity of selected insectary plants to peach orchards could improve the presence of hoverflies, which might benefit the biological control of M. persicae.


Assuntos
Afídeos , Brassicaceae , Dípteros , Prunus persica , Animais , Controle Biológico de Vetores
2.
Insects ; 11(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003457

RESUMO

Lipolexis is a small genus in the subfamily Aphidiinae represented by one species in Europe (Lipolexis gracilis Förster) and by four in Asia (Lipolexis wuyiensis Chen, L. oregmae Gahan, L. myzakkaiae Pramanik and Raychaudhuri and L. pseudoscutellaris Pramanik and Raychaudhuri). Although L. oregmae is employed in biological control programs against pest aphids, the last morphological study on the genus was completed over 50 years ago. This study employs an integrative approach (morphology and molecular analysis (COI barcode region)), to examine Lipolexis specimens that were sampled worldwide, including specimens from BOLD database. These results establish that two currently recognized species of Lipolexis (L. gracilis, L. oregmae) are actually a species complex and also reveal phylogenetic relationships within the genus. Six new species are described and a global key for the identification of Lipolexis species is provided.

3.
Insects ; 10(5)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126134

RESUMO

(1) Habitat management can enhance beneficial arthropod populations and provide ecosystem services such as biological control. However, the implementation of ecological infrastructures inside orchards has a number of practical limitations. Therefore, planting/growing insectary plants in the margins of orchards should be considered as an alternative approach. (2) Here, we assessed the efficacy of a flower margin composed by four insectary plant species (Achillea millefolium, Lobularia maritima, Moricandia arvensis and Sinapis alba), which was placed on an edge of four Mediterranean apple orchards to attract natural enemies of two apple tree aphids (Dysaphis plantaginea and Eriosoma lanigerum). We also characterized the natural enemies present in the aphid colonies. (3) Our results show that the implementation of a flower margin at the edge of apple orchards attracts predators (Syrphidae, Thysanoptera, Araneae, Heteroptera, Coleoptera) and parasitoids. Parasitoids are the main natural enemies present in aphid colonies in our area. (4) The implementation of the flower margins successfully recruited natural enemy populations, and the presence of parasitoids in the surroundings of the orchards increased the parasitism of D. plantaginea colonies.

4.
Insects ; 10(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995749

RESUMO

Aphids are a serious pest for peach crops. They have traditionally been managed with insecticides, but there is increasing concern about the risk that insecticides pose to both humans and the environment. As a first step to use biological control in aphid management, we conducted a 3-year field survey in northeastern Spain to determine which parasitoids and hyperparasitoids were most prevalent on two aphids, Myzus persicae (Sulzer) and Hyalopterus spp. Koch, the most harmful to peach trees. We collected 11 parasitoid species from M. persicae, with Aphidius matricariae (Haliday) being the most abundant. Two parasitoid species were also collected from Hyalopterus spp., Aphidius transcaspicus Telenga and Praon volucre (Haliday). Hyperparasitoid species overlapped between these aphids but their relative abundances differed. We also discuss the possible impacts of hyperparasitoids on parasitoid populations. Our results suggest that it would be feasible to implement biocontrol methods for aphids in integrated pest management programmes in peach orchards. There are a number of primary parasitoid species associated with these aphids, and the nearby crops and wild vegetation in the vicinity and within the orchards may provide a suitable habitat for them. Additionally, some of them are commercially available and might be usable in augmentative releases.

5.
J Econ Entomol ; 111(2): 533-541, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29365141

RESUMO

The green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most economically important aphid species affecting crops worldwide. Since many natural enemies of this aphid have been recorded, biological control of this pest might be a viable alternative to manage it. Selected plant species in field margins might help to provide the natural enemies with food sources to enhance their fitness. This study aimed to investigate if sweet alyssum, Lobularia maritima (L.) (Brassicaceae), is a potential food source for the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) and the predator Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), and whether this flower could contribute to enhance the biological control of M. persicae. Volatiles produced by alyssum, with and without flowers, attracted both natural enemies. This attractiveness to alyssum flowers was disrupted when compared with peach shoots recently infested with a relatively low number of aphids. When aphids were absent, parasitoids exposed to alyssum survived longer than those that fed on a sugar solution or on water. In the case of the predator, alyssum flowers did not benefit longevity since the nectaries were inaccessible to females. However, our results provide evidence that A. aphidimyza would be able to feed on nectar if accessible. The floral resource did not improve the reproductive capacity of the two natural enemies, but the 10% sugar solution increased the egg load of the predator. Provision of other sugar resources, such as flowers with exposed nectaries and extra floral nectar may also be a viable option to improve the biological control of M. persicae.


Assuntos
Afídeos , Brassicaceae , Dípteros/fisiologia , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Comportamento Alimentar , Feminino , Flores , Aptidão Genética , Longevidade , Reprodução , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...